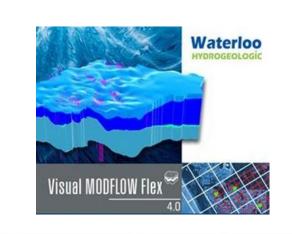
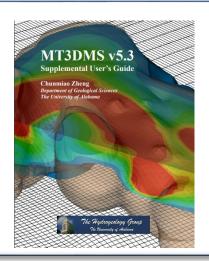
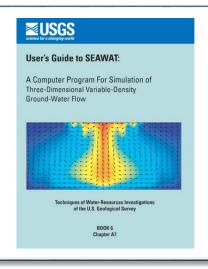


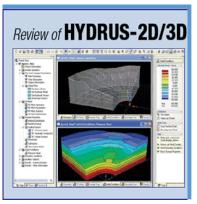
능동적 수리제어와 결합된 PRB 원위치 정화공정에서 수리지질 불균질성 및 지하수질 특성을 고려한 수치모의를 위한 모델 개발 및 현장 적용 연구

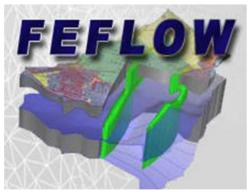
2021.6.15 석희준 박사 (한국지질자원연구원)

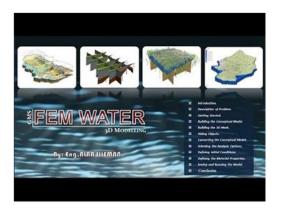

"The computational disaster of groundwater modeling doesn't lie in convergence failures but convergence with inaccurate solutions"


-T.P. Clement(RT₃D developer)-


"Unrecognized errors in numerical groundwater models are becoming more possible as "user-friendly" graphical interfaces make it easier for models to be used (and to be misused)"

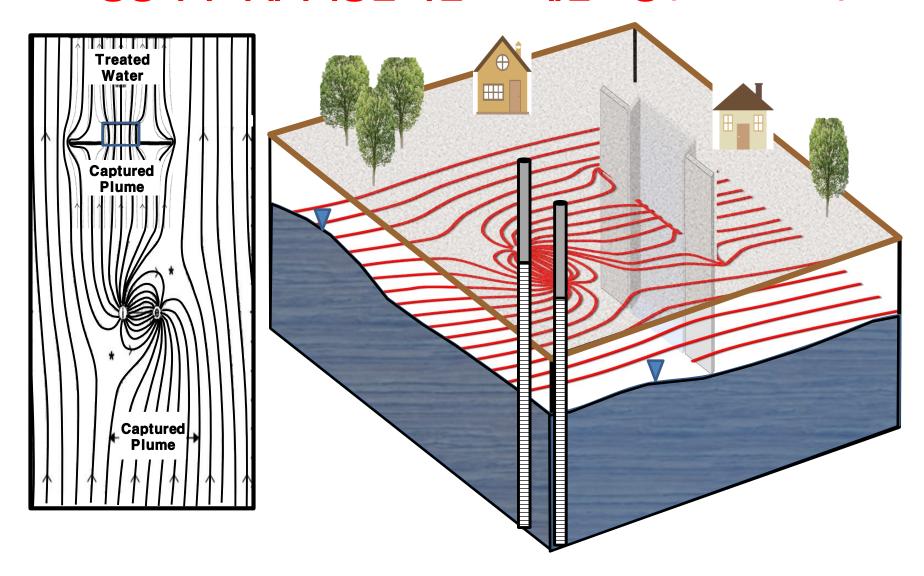

-L.F. Konikow(MOC developer)-



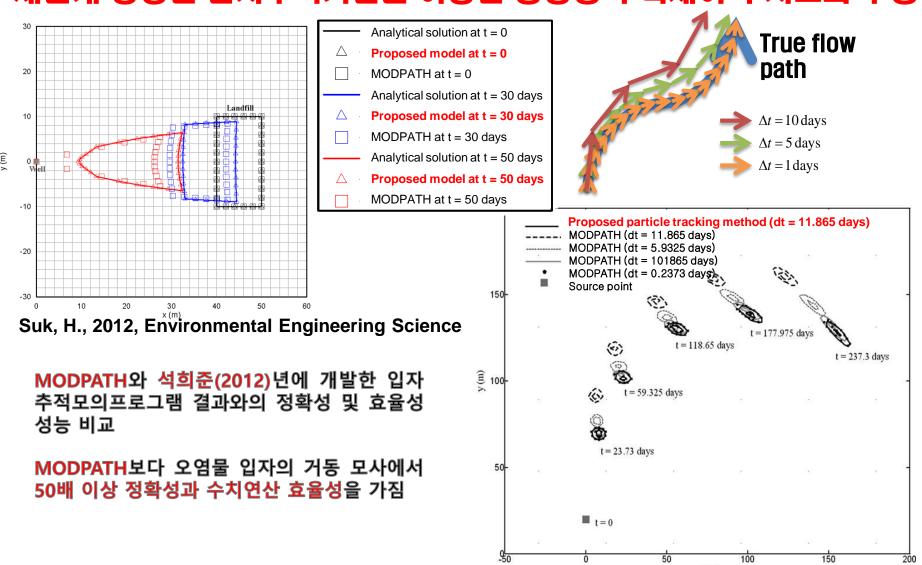


PRB 지하수 흐름 및 오염물질 거동 상용수치모델

상용 소프트웨어		주요 기작	모델링 결과
지하수 흐름 수치모의	MODFLOW	Darcy's law 질량보존	시공간적인 지하수 속도 및 방향 분포
다종 오염물 거동 수치모의	MT3DMS RT3D	이 송 확산+흡착+반응	시공간적인 오염물 농도분포
오염 이동 경로 분석	MODPATH -	이 송	포획구간 및 범위 산정, 체류시간
지화학반응 수치모의	PHREEQC, MINTEQ, HYDROGEOCHEM	Complexation Ion exchange Precipitation-Dissolution Adsorption Acid-base reaction Redox reaction	다양한 화학종의 분포상태, 몰농도, 2차 광물 침전

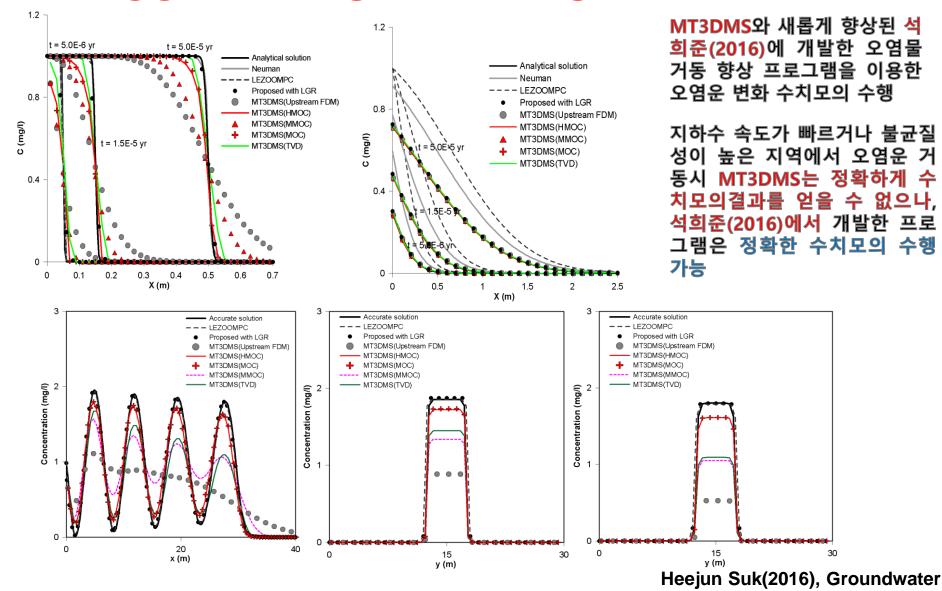


PRB적용 기존 수치 연구 방법


PRB 특성	상용모델
■ PRB 설계 인자(두께)등을 결정하기 위한 <u>지하수 속도 및 체류시간</u>	MODFLOW, MODPATH
■ PRB 설계인자(길이)등을 결정하기 위한 <u>포획권 및 오염경로 계산</u>	MODPATH
■ PRB 설계 인자(위치,길이,심도)등을 결정하기 위한 시간에 따른 오염운의 분포상태 계산	MT3DMS
■ PRB 원위치 처리 효율 평가를 위한 시간에 따른 PRB 반응에 의해 상 하류 농도차이 계산	RT3D, MT3DMS

투수성 반응벽체의 장기 성능 저하를 평가하기 위한 이차광물침전, 미생물학적인 파울링에 의한 공극감소에 따른 수리전도도 감소를 평가하는 범용 또는 상용소프트웨어는 존재하지 않음

능동적 수리제어기능을 가진 PRB 개념 모형 (IETWPS-PRB)

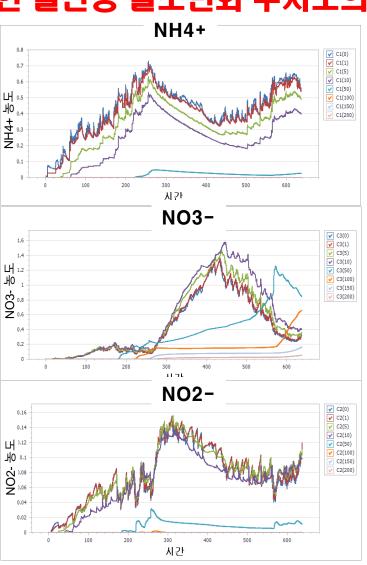


새롭게 향상된 입자추적기법을 이용한 능동형 수리제어 수치모의 수행

Suk, H. and Yeh, G. T., 2009, Journal of Hydrologic Engineering, ASCE

새롭게 향상된 오염물 거동 프로그램을 이용한 오염운 변화 수치모의

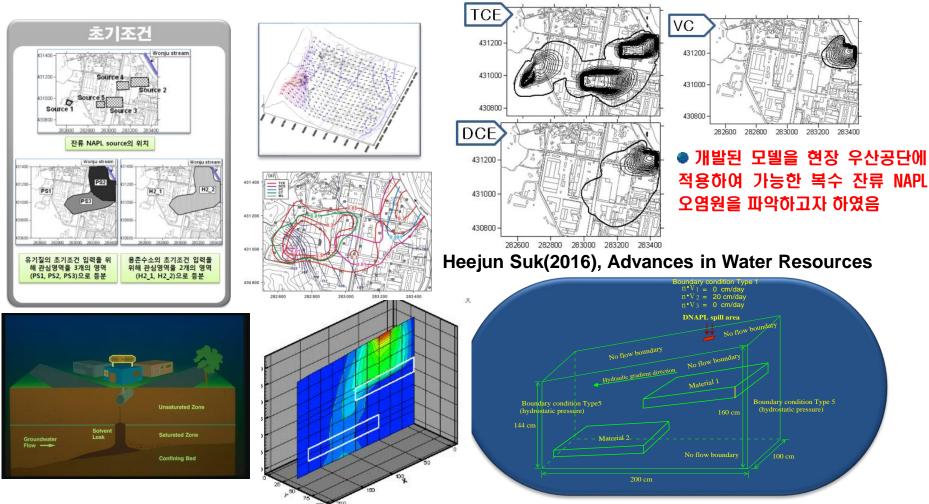
새롭게 향상된 오염물 거동 프로그램을 이용한 질산성 질소변화 수치모의



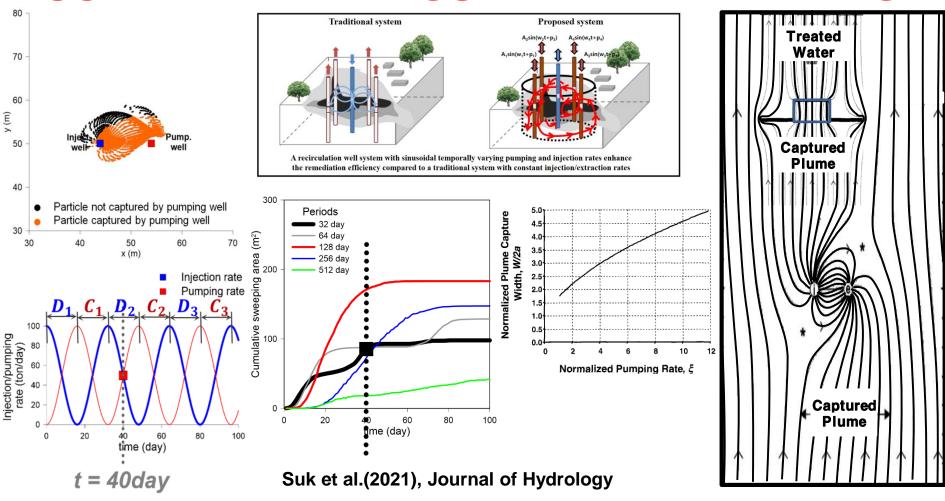
지하수 및 토양과 같은 농업 환경 내에서 살포농약 및 질산성 질소의 거동 예측 모델 개발 (PESTN 소프트웨어)

살포농약별, 토양 특성별, 강우 조건별, 증발산, 관개 방법 및 다양한 지구화학 반응 (흡착, 휘발, 생분해 등)을 고려할 수 있는 유해 오염물질거동 예측 모델 개발

Heejun Suk(2019), Journal of Hydrology


새롭게 향상된 오염물 거동 프로그램을 이용한 질산성 질소변화 수치모의

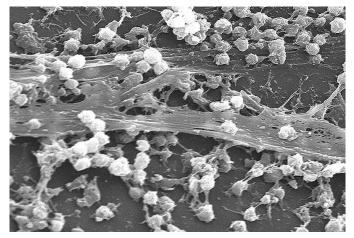
지하수 및 토양과 같은 농업 환경 내에서 살포농약 및 질산성 질소의 거동을 PESTN 모델을 이용해서 현장 실험 및 라이지미터 결과와 비교 분석


불수용성 TCE및 탈염소화 반응을 모사하는 새로운 수치 모형 적용

환경부 가이아 사업 시 TCE 거동 및 탈염소화 반응을 모사하는 소프트웨어 개발 원주우산공단에 TCE 및 자핵종 거동의 장기 예측을 위해서 수치모의 수행

Suk, H. and Yeh, G.T.(2007), Journal of Hydrologic Engineering, ASCE

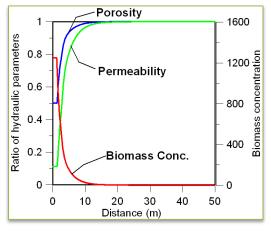
능동적 수리제어의 효과적인 성능을 위한 설계 인자 수치모의 수행


양수/주입 시스템의 상류 오염운 포집 면적을 늘리고, 경제효율적인 운용을 유지하기 위한 가변주입양수기법을 적용. 최적의 주입 및 양수량 크기 및 사인함수 형태의 주입 및 양수정 운영시 최적의 주기 결정을 위한 모델링 수행

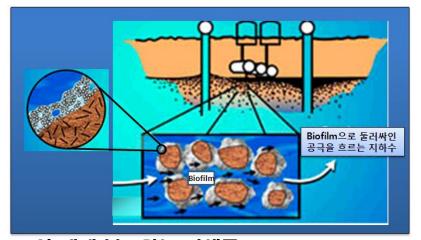
능동적 수리제어의 효과적인 성능을 위한 설계 인자 수치모의 수행

양수/주입 시스템의 <mark>가변운영기법을 통해서 재순환되는 영역 면적의</mark> 시간에 따른 변화를 개발된 수치모델을 이용해서 수치모사를 수행하는 동영상

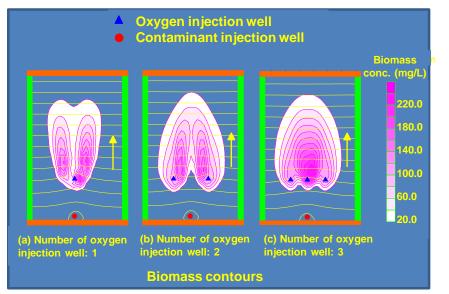
생분해 반응에 의한 미생물학적인 성장에 따른 공극 감소 및 수리전도도 변화 모델링 수행(Biofouling)

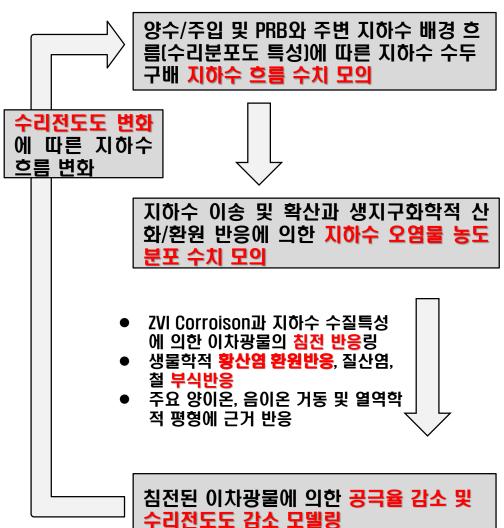


미생물 생장에 의한 수리전도도 변화를 고려하는 모델 개발


Permeability reduction

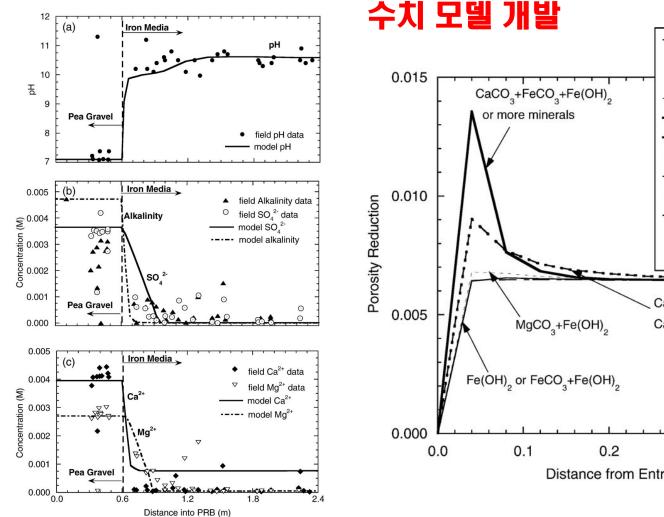
$$k_b = \frac{kn_b^{1/2}}{8} \left[\int_{r_{ob}}^{R-L_f} \frac{r^3}{(r+L_f)^2} f(r+L_f) dr \right]^2$$


Porosity reduction
$$n_b = \int_{r_{ob}}^{R-L_f} \frac{r^2}{(r+L_f)^2} f(r+L_f) dr$$


미생물이 성장하여 입자를 둘러싼 모양

토양 내에 분포하는 미생물

PRB내 Mineral fouling에 의한 공극을 및 수리전도도 감소수치 모델 개발


Reaction type	Reaction	Mineral formed	Solubility
Reaction type	Reaction	Willical formed	constant $\log(K_{eq})^a$
Aerobic iron corrosion	$Fe^0 + H_2O + 0.5O_2(aq) \rightarrow Fe^{2+} + 2OH^-$	_	-
Anaerobic iron corrosion	$Fe^{0} + 2H_{2}O \rightarrow Fe^{2+} + H_{2}(aq) + 2OH^{-}$	-	-
Nitrate iron corrosion	$4Fe^{0} + 7H_{2}O + NO_{3}^{-} \rightarrow 4Fe^{2+} + 10OH^{-} + NH_{4}^{+}$	-	-
Microbial sulfate reduction	$SO_4^{2-} + 4H_2(aq) \rightarrow HS^- + OH^- + 3H_2O$	_	-
Equilibrium reaction between bicarbonate and carbonate ions	$HCO_3^- \hookrightarrow H^+ + CO_3^{2-}$	-	-10.07
Dissociation of water	$H_2O \leftrightarrow H^+ + OH^-$	-	-14.0
Secondary mineral precipitation/dissolution	$CaCO_3(s) \mathop{\leftrightarrow} Ca^{2+} + CO_3^{2-}$	Calcite/Aragonite	-8.1
	$CaMg(CO_3)_2(s) \mathop{\leftrightarrow} Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$	Ca-Mg-carbonate	-17.7
	$MgCO_3(s) \leftrightarrow Mg^{2+} + CO_3^{2-}$	Magnesite	- 7.2
	$Mg(OH)_2(s) \leftrightarrow Mg^{2+} + 2OH^-$	Brucite	-11.2
	$MnCO_3(s) \leftrightarrow Mn^{2+} + CO_3^{2-}$	Rhodochrosite	-9.3
	$Mn(OH)_2(am) \leftrightarrow Mn^{2+} + 2OH^-$	Pyrochroite	-12.9
	$FeCO_3(s) \leftrightarrow Fe^{2+} + CO_3^{2-}$	Siderite	-10.5
	$Fe(OH)_2(am) \leftrightarrow Fe^{2+} + 2OH^-$	Ferrous Hydroxide	-15.2
	$FeS(am) + H_2O \leftrightarrow Fe^{2+} + HS^- + OH^-$	Ferrous Sulfide	-18.4

$$S_t = \left(S_0 - \frac{\Delta n}{T_c}\right) \left(\frac{\varphi}{\varphi_0}\right)^{2/3}$$

$$K_{pt} = K_{p0} \left[\frac{n_0 - \Delta n_t}{n_0} \right]^3 / \left[\frac{1 - n_0 + \Delta n_t}{1 - n_0} \right]^2$$

Morrison et al. 2003; Mayer et al., 2001

PRB내 Mineral fouling에 의한 공극을 및 수리전도도 감소

PRB 및 주변 대수층에서 주요 양이온/ 음이온 농도 변화 수치모의 결과

CaCO3+Fe(OH) MgCO₃+Fe(OH)₂ CaCO₃+MgCO₃+Fe(OH)₂ CaCO₃+FeCO₃+Fe(OH)₃ CaCO2+FeCO2+Fe(OH)2+MgCO2 CaCO₃+FeCO₃+Fe(OH)₂+CaMg(CO₃)₂ CaCO₃+FeCO₃+Fe(OH)₂+Mg(OH)₂ CaCO₃+FeCO₃+Fe(OH)₂+MnCO₃ CaCO₃+FeCO₃+Fe(OH)₂+Mn(OH)₂ CaCO₃+FeCO₃+Fe(OH)₃+FeS CaCO2+Fe(OH)2, or CaCO₃+MgCO₃+Fe(OH)₂ After 1 yr 0.3 0.4 0.5 Distance from Entrance Face (m)

Fe(OH)

FeCO₃+Fe(OH)₃

PRB 내부에서 탄산염 및 산화철 광물 침전에 의한 공극 감소 분포 수치모의결과

감사합니다