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A B S T R A C T   

Waste recycling has become crucial with the increasing attention paid to environmental rules and the fast- 
depleting resources of critical elements. Soaring demands for lithium in cathode materials of rechargeable 
batteries result in a surge in waste saggar after being used in the calcination of cathode precursor. The recycling 
of lithium from waste saggar is therefore imperative due to the high supply-risk of lithium. Herein, waste saggar 
composed of various mineral phases (26.26 % LiAlSi4O10 ≅ 0.6 % Li; 6.34 % Li4SiO4 ≅ 1.47 % Li; 0.79 % 
LiOH•H2O ≅ 0.13 % Li; 0.03 % Li2CO3 ≅ 0.01 % Li) was leached in water for lithium extraction; while the effects 
of NaOH, Ca(OH)2, and H2SO4 as potential additives were examined under a wide temperature range of 5–80 ◦C. 
Interestingly, the observed order of leaching efficiency at lower temperature (20 ◦C) H2SO4 > NaOH > Ca(OH)2 
was in variance with that at 80 ◦C (NaOH > H2SO4 Ca(OH)2). The apparent activation energy for lithium 
extraction was determined to be 29.8 kJ/mol using NaOH, 33.8 kJ/mol using Ca(OH)2, and 14.1 kJ/mol using 
H2SO4, indicating that the overall leaching process follows a mixed-controlled mechanism. The maximum effi
ciency of 94 % Li-extraction was achieved with NaOH which was used for the precipitation recovery of Li2CO3 of 
purity above 99 %.   

1. Introduction 

Lithium-ion batteries (LIBs) offer advantageous properties with high 
energy density, long durability, lightweight, and small volume over 
other rechargeable batteries of commercial usage [10,11,19,3]. Since 
the advent of LIBs, a paradigm shift in energy generation and storage 
technology has been observed, particularly in portable electronic de
vices and electric vehicles (EVs) [21,41]. The demands for LIBs have 
grown rapidly because of the frequent change in consumer electronics 
engineering and the global shifting towards EVs [17,23]. The annual 
sales of EVs in 2030 are projected to be 21–31 million [30]. Conse
quently, the soaring demands for LIBs are expected to increase by 
14-folds between 2020 and 2030 [7]. Consequently, it would result in 
high lithium demand and a supply crunch in the commodity market. 

Securing lithium from alternative sources is in high traction for 
metallurgical researchers. For example, its extraction from geothermal 
water [33] and seawater [34], albeit these techniques still face eco
nomic, environmental, and scale-up challenges. Recycling of spent LIBs 
has been widely explored as a secondary resource to establish the cir
cular economy of lithium and other critical metals therein [2,13]. This 

source depends on the generation of post-consumer waste volume, 
which is always accompanied by an increased production of battery 
materials [24,26]. The preparation of cathode materials into saggar pot 
is a significant step in this process; thereby, the precursors are subjected 
to the calcination at a higher temperature forming the product viz., 
LiNixCoyMn1− x− yO2 (LNCM), LiCoO2 (LCO), and LimNixCoyAlzO2 
(LNCA). As the saggars are made of ceramic materials, the inner wall 
comes in direct contact with the precursor compounds/elements during 
the progress of the chemical reactions [22,27,36]. It also drives the re
fractory material forming new multi-element compounds on the 
saggar-wall surface [39]. Because of the usual excess mixing of LiOH 
with transition metal oxides, the solid-state reaction induced at a high 
temperature, in which molten lithium component penetrates and 
spreads into the inner wall of saggar, prominently forms the composite 
oxides, Li–Al–Si–O [14]. In this manner, the repeated usage of saggar in 
cathode production promotes surface corrosion and decreases efficacy 
with an increased impurity profile. Consequently, the replacement of 
saggar at regular intervals becomes a necessity for a higher conversion 
and efficient yielding of the cathode mass. Commonly, after each 5–20 
cycles, the used saggar box has to be scrapped as a waste [40]. 
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